|
||||
ナンバリングコード
GSI-11-6017-J
科目区分
主専攻科目
単位数
選択1単位
授業形態
特論
対象学年
修士1・2年
学期 曜日 時間 集中講義の有無春1期月曜2限目
講義室
情報学研究科棟1階第3講義室
開講専攻
数理情報学専攻
担当教員 所属
吉信康夫,松原洋,木原貴行
所属
数理情報学専攻
メールアドレス
yosinobu@i.nagoya-u.ac.jp
授業概要◆講義目的
数理論理学は,数学における「推論の正しさ」の概念を数学的に厳密に定式化しようとする試みに端を発する学問であるが, その知見は計算機科学にも多くの応用をもつなど,情報現象の数理的理解における基礎のひとつになっている。本講義では,数理論理の最も基本的な枠組みである命題論理や一階述語論理について,それが構文論と意味論という二つの側面を持つこと,そしてそれら二つの側面がどのように結びついているかについて学ぶ。
◆授業内容
まず,準備として命題論理の構文論と意味論について講述した後,命題論理の完全性定理を証明付きで紹介する。その後,一階述語論理の構文論(項,論理式や公理,推論規則,証明の定式化)と意味論(モデルによる項や論理式の解釈)について講述し,一階述語論理の完全性定理の主張と証明の概略を紹介する。時間に余裕があればその応用についても述べる。
〔計画〕 1. イントロダクション 2. 命題論理の構文論と意味論 3. 命題論理の完全性 4. 一階述語論理の構文論 5. 一階述語論理の意味論 6. 一階述語論理の完全性定理 7. 発展的話題 8. まとめ ◆教科書・参考文献・履修条件等
必要に応じて参考資料を配布する。
◆授業期間中の課題・宿題等
講義内容の理解の助けとするためレポート問題を適宜出題する。
成績評価方法・基準
レポート40%,期末試験60%で評価し,合計100点満点で60点以上を合格とする。
Course Title
Mathematical Logic 1(Advanced Lecture)
Numbering Code
GSI-11-6017-J
Course Category
Main majors
Credits
Elective1
Class FormatGrade
Master1-2
Semester, Day and PeriodSpring 1 semester Monday 2
Instructor(s)
YOSHINOBU Yasuo, MATSUBARA Yo, KIHARA Takayuki
Affiliation
Department of Mathematical Informatics
Mailaddress
yosinobu@i.nagoya-u.ac.jp
Course Topics
First we discuss the syntax and semantics of propositional logic and present a proof of the completeness theorem of propositional logic. We then cover syntax (terms, logical formulas, and rules of inference) and semantics (interpretations of terms and logical formulas) of first order predicate logic. We also present the statement of the completeness theorem of first order predicate logic and an outline of its proof.
Course PurposeCourse ContentsTextbooks, Reference Materials and RequirementsAssignmentGrading Criteria |
||||
|